Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836630

RESUMO

In order to separate the colloidal in high-turbidity water, a kind of magnetic composite (Fe3O4/HBPN) was prepared via the functional assembly of Fe3O4 and an amino-terminal hyperbranched polymer (HBPN). The physical and chemical characteristics of Fe3O4@HBPN were investigated by different means. The Fourier Transform infrared spectroscopy (FTIR) spectra showed that the characteristic absorption peaks positioned at 1110 cm-1, 1468 cm-1, 1570 cm-1 and 1641 cm-1 were ascribed to C-N, H-N-C, N-H and C=O bonds, respectively. The shape and size of Fe3O4/HBPN showed a different and uneven distribution; the particles clumped together and were coated with an oil-like film. Energy-dispersive spectroscopy (EDS) displayed that the main elements of Fe3O4/HBPN were C, N, O, and Fe. The superparamagnetic properties and good magnetic response were revealed by vibrating sample magnetometer (VSM) analysis. The characteristic diffraction peaks of Fe3O4/HBPN were observed at 2θ = 30.01 (220), 35.70 (311), 43.01 (400), 56.82 (511), and 62.32 (440), which indicated that the intrinsic phase of magnetite remained. The zeta potential measurement indicated that the surface charge of Fe3O4/HBPN was positive in the pH range 4-10. The mass loss of Fe3O4/HBPN in thermogravimetric analysis (TGA) proved thermal decomposition. The -C-NH2 or -C-NH perssad of HBPN were linked and loaded with Fe3O4 particles by the N-O bonds. When the Fe3O4/HBPN dosage was 2.5 mg/L, pH = 4-5, the kaolin concentration of 1.0 g/L and the magnetic field of 3800 G were the preferred reaction conditions. In addition, a removal efficiency of at least 86% was reached for the actual water treatment. Fe3O4/HBPN was recycled after the first application and reused five times. The recycling efficiency and removal efficiency both showed no significant difference five times (p > 0.05), and the values were between 84.8% and 86.9%.

2.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570769

RESUMO

The use of magnetic composites in wastewater treatment has become widespread due to their high flocculating characteristics and ferromagnetism. This review provides an analysis and summary of the preparation and application of magnetic composites through controllable assembly for use in wastewater treatment. The applications of magnetic composites include the treatment of dye wastewater, heavy metal wastewater, microalgae suspensions, and oily wastewater. Additionally, the recycling and regeneration of magnetic composites have been investigated. In the future, further research could be focused on improving the assembly and regeneration stability of magnetic composites, such as utilizing polymers with a multibranched structure. Additionally, it would be beneficial to explore the recycling and regeneration properties of these composites.

3.
Environ Technol ; 44(17): 2631-2647, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35113005

RESUMO

The performance of granular activated carbon (GAC) loaded with different combinations of Fe, Co, Ni, Mn, and Ti was examined for the electrochemical degradation of an azo dye such as acid red B (AR-B). Among the bimetallic groups, the combination of Fe and Co exhibited the best degradation effect. X-ray diffraction and X-ray photoelectron spectroscopy revealed that the morphology of the catalyst is CoFe2O4, and scanning electron microscopy manifested that the catalyst is distributed on the GAC surface and holes. The initial pH, hydraulic retention time, and current intensively affected the decolourisation and degradation efficiencies of AR-B, while the electrolyte types and concentrations did not exert any considerable effect. Electron spin resonance spectroscopy indicated that strong signals of hydroxyl radicals are produced by the Fe-Co/GAC electrodes. Results from fluorescence spectroscopy and gas chromatography-mass spectrometry suggested that hydroxyl radicals preferentially attack azo bonds during the degradation of AR-B, forming a series of compounds, and these compounds are finally degraded into small molecules of organic acids, carbon dioxide, and water.


Assuntos
Compostos Azo , Óxidos , Poluentes Químicos da Água , Compostos Azo/química , Carvão Vegetal/química , Eletrodos , Oxirredução , Óxidos/química , Espectroscopia Fotoeletrônica , Poluentes Químicos da Água/química
4.
Environ Sci Pollut Res Int ; 25(26): 26246-26258, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29978312

RESUMO

The Chlorella vulgaris harvesting was explored by magnetic separation using Fe3O4 particles coated with the plant polyphenol chemically modified by a Mannich reaction followed by quaternization (Fe3O4@Q-PP). The -N(R)4+ and Cl-N+-C perssad of the Q-PP were linked to the Fe3O4 particles by N-O bonds, as suggested by the X-ray photoelectron spectroscopy spectra. The thermogravimetric analysis displayed the mass percentage of the Q-PP coated on the Fe3O4 surface was close to ~ 5%. Compared with the naked Fe3O4 particles, zeta potentials of the Fe3O4@Q-PP particles were improved from the range of - 17.5~- 25.6 mV to 1.9~36.3 mV at pH 2.1~13.1. A 70.2 G coercive force was obtained for the Fe3O4@Q-PP composite, which demonstrated its ferromagnetic behavior. The use of Fe3O4@Q-PP resulted in a harvesting efficiency of 90.9% of C. vulgaris cells (3.06 g/L). The Fe3O4 particles could be detached from the cell flocs by ultrasonication leading to a recovery efficiency of 96.1% after 10 cycles. The recovered Fe3O4 could be re-coated with Q-PP and led to a harvesting efficiency of 80.2% after 10 cycles. The magnetic separation using Fe3O4@Q-PP included charge neutralization followed by bridging and then colloid entrapment.


Assuntos
Aquicultura/métodos , Chlorella vulgaris , Óxido Ferroso-Férrico/química , Magnetismo/métodos , Polifenóis/química , Chlorella , Larix/química , Microalgas , Espectroscopia Fotoeletrônica , Casca de Planta/química , Polifenóis/isolamento & purificação
5.
Bioresour Technol ; 198: 789-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454365

RESUMO

The harvesting of Chlorella vulgaris was investigated by magnetic flocculation, where the natural magnetite was used as magnetic seeds and the polyaluminium chloride (PACl) and polyacrylamide (PAM) were used as the coating polymer on the Fe3O4 surface. The composite modes of PACl, PAM, and Fe3O4 and their effects on harvesting were studied. The results showed that adding the composite PACl/Fe3O4 first (at (0.625 mmol Al/L)/(10 g/L)) followed by the addition PAM (at 3mg/L) was the optimum dosing strategy. Following this strategy, 99% of cells could be harvested in less than 0.5 min, and it could overcome negative impacts from pH and algal organic matter. Compared to PACl, ζ-potentials of PACl/Fe3O4 were found to be increased substantially from -4.9-8.5 mV to 1.5-19.5 mV at pH range 2.1-12.3. The charge neutralization of PACl/Fe3O4 and sweeping of PAM play an important role in magnetic harvesting of microalgal cells.


Assuntos
Resinas Acrílicas , Hidróxido de Alumínio , Chlorella vulgaris/isolamento & purificação , Óxido Ferroso-Férrico , Biomassa , Floculação , Concentração de Íons de Hidrogênio , Magnetismo , Microalgas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...